Object Detection Evaluation

Object Detection Banner

This is the 2D object detection benchmark. We annotate over 2.23M object boxes for about 463K video frames. The benchmark uses 2D bounding box overlapping rate to compute precision-recall curves for calculating the AP, mAP75, AP50, mAP75, AP_S, AP_M, and AP_L metrics in various pedestrian categories.

Leaderboard

Detectors Years V1-Train [Vo, Vr, Va] V2-Train [Vo, Vr] Anchor GFlops #Params.
val. [Vo, Vr, Va] test. [Vo, Vr, Va] test. [Va] test. [Vo, Vr] test. [Va]
mAP50 AR mAP50 AR mAP50 AR mAP50 AR mAP50 AR
FasterRCNN 2015 0.674 0.634 0.666 0.623 0.664 0.620 0.544 0.524 0.497 0.509 0.19T 41.38M
CornerNet 2018 0.495 0.625 0.485 0.619 0.483 0.624 0.436 0.563 0.456 0.598 0.71T 201M
CascadeRPN 2019 0.662 0.699 0.664 0.696 0.649 0.689 0.579 0.663 0.532 0.624 0.18T 41.97M
CenterNet 2019 0.054 0.238 0.051 0.233 0.047 0.224 0.161 0.260 0.155 0.257 20.38G 14.21M
DeTR 2020 0.367 0.407 0.377 0.403 0.363 0.403 0.275 0.329 0.254 0.318 44.55G 28.83M
EfficientNet 2020 0.310 0.417 0.310 0.412 0.293 0.404 0.075 0.128 0.073 0.133 57.28G 18.46M
Deformable-DETR 2021 0.660 0.671 0.661 0.668 0.652 0.663 0.626 0.631 0.587 0.626 0.18T 40.1M
YOLOx 2021 0.673 0.709 0.672 0.698 0.670 0.698 0.563 0.627 0.540 0.626 13.33G 8.94M
YOLOv5s 2021 0.757 0.766 0.748 0.764 0.743 0.761 0.660 0.716 0.636 0.712 8.13G 12.35M
DiffusionDet 2023 0.731 0.749 0.733 0.745 0.718 0.738 0.701 0.729 0.660 0.716 - 26.82M
YOLOv8 2023 0.716 0.754 0.715 0.753 0.717 0.755 0.606 0.702 0.597 0.703 14.28G 11.14M
YOLOv11 2025 0.698 0.684 0.696 0.690 0.693 0.692 0.673 0.662 0.639 0.649 21.6G 9.43M
YOLO26 2025 0.716 0.752 0.713 0.758 0.710 0.760 0.682 0.708 0.646 0.695 22.5G 9.95M

Submit Your Results

You can submit your metric values via the provided form. Furthermore, we would highly appreciate your contribution with clear links to relevant articles and code for more in-depth analysis.

Click here to submit your results:

Submit